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Abstract: Multiband signal is a typical signal in the realm of modern communications, whose spectrum is the 

sum of several narrow band signals in frequency domain. Modulated Wideband Converter (MWC) system, 

which is based on the emerging theory of Compressed Sensing (CS), can sample multiband signals at sub-

Nyquist rate without carrier frequencies as a prior. In this paper, a novel recovery strategy for MWC is 

proposed, exploiting Simultaneous Smoothed  Norm (SL0), to reconstruct original signal from sub-Nyquist 

sampling data. This method approximates norm using a continuous function, which can improve the 

reconstruction accuracy. Simulation results demonstrate the proposed algorithm is superior to the original 

orthogonal matching pursuit (SOMP) algorithm. 
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I. Introduction 
Radio frequency (RF) signal is a typical signal in radar and communication systems. Generally, RF 

signal is modulated by high carrier frequencies in order to transform effectively. Multiband signal resides within 

several continuous frequency intervals spread over a wide spectrum. Therefore, it is a sparse signal that consists 

of a relatively small number of narrowband transmissions spread across a wide spectrum range. Wideband 

receiver is a representative application in communications depicted in Figure 1, in which the received signal 

follows the multiband model, so called multiband signal. 

 

B

-f1 -f2 -f3 f3 f2 f1

B

f1

f2

f3

.Receiver

 
Fig 1. Three RF transmissions with different carriers fi. The receiver sees a multiband signal. 

 

The Nyquist sampling theorem states that analog signals can be reconstructed perfectly from their 

sampling data, if they are sampled at a rate that is at least twice of the highest frequency of these analog signals. 

Sampling multiband signals based on Nyquist theorem, however, will lead to a multitude of data, for their 

wideband property. A method derived by Landau [1] achieves the minimal sampling rate by demodulating each 

narrow band to base frequency range and then sample in Nyquist rate respectively. In paper [2], a periodic non-

uniform sampling strategy was proposed as an alternative to directly sample a multiband signal at an average 

rate. Nevertheless, these approaches need the carrier frequencies as a prior knowledge that is always difficult to 

obtain. 

The following papers present several sub-Nyquist strategies that have capability to treat arbitrary 

carrier positions: multi-coset sampling [3], the Nyquist-folding ADC [4], the random demodulator (RD) [5] and 

its parallel version [6], and the modulated wideband converter (MWC) [7]. These approaches, differing from 

each other both in sampling strategies and algorithms of recovery, process signals in different models they 
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assume. Researches on sub-Nyquist sampling have so far focused on perfect recovery of the Nyquist-rate input 

signal. 

This paper presents a novel recovery scheme for sub-Nyquist sampling of multiband signals based on 

MWC, which does not require the frequency support as a prior knowledge. Moreover, our strategy gives a better 

performance in recovery rate compared with SOMP. The rest of this paper is organized as follows. The 

theoretical background of this work is provided in Section II. In Section III, we depict the proposed algorithm in 

detail and the performance analysis. Section IV presents simulation results. Finally the conclusion is given in 

Section V. 

II. Theoretical Background 
A. Framework of MWC 

The signal is a real-valued continuous-time signal in L2. That is signal x(t) satisfies: 

                                                   
2

( )x t dt



                      (1) 

The Fourier transform of x(t) is defined as:  

                        2( ) ( ) j ftX f x t e dt





                                                                            (2) 

The framework of MWC is presented in literature [7], drawn in Fig 2. 
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Fig 2. The modulated wideband converter-a practical sampling stage for multiband signals 

 

where x(t) is original signal, pi(t) is a Tp-periodical mixing function, 1,2, ,i m , h(t) is an ideal low-pass filter 

whose cutoff frequency is 1/2Ts.  

Here, a simple analysis in frequency domain for MWC is given below. Consider the i-th channel. Since pi(t) is 

Tp-periodic: 

( ) , ( 1) , 0 1
p p

i ik

T T
p t k t k k M

M M
                                   (3) 

where  1, 1ik    , ( ) ( ),i p ip t nT p t n Z   , M denotes the number of  ±1 intervals during each period of 

pi(t) 

The Fourier expansion of pi(t) in the i-th channel is 

2

( )
p

j lt
T

i il

l

p t c e






                                                                            (4) 

where  
2

0

1
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p
p

j ltT T

il i

p

c p t e dt
T




                                                                   (5) 

The Fourier transform of mixed function ( ) ( ) ( )i ix t x t p t  is 

2( ) ( ) ( )j ft

i i il p

l

X f x t e dt c X f lf







                                                   (6) 

yi[n] is the sampling sequence, acquired after mixing signal ( )ix t  filtered by h(t). Consequently, the 

discrete-time Fourier transform (DTFT) of sequence yi[n] is expressed as 
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Define 
2

( ) ( )si fT

i iy f Y e


 , 
0( ) ( ( 1) )i pz f X f i L f    then it is convenient to write (7) in matrix form 

as 

            ( ) ( )f fy Az                                                         (8) 

where y(f) is a vector of length m with the i-th element
2

( ) ( )si fT

i iy f Y e


 , and
1( ) [ ( ),..., ( )]T

Lf z f z fz , 

L=2L0+1. The m×L matrix A contains the coefficients cil.  

 

B. Reconstruction 

The key issue of recovering x(t) from the sampled signals yi[n] is to determine the sparest z(f). The whole process 
is combined into a framework called a continuous to finite (CTF) system [4], depicted in Fig 3. 

 

Fig 3. Continuous to finite (CTF) system 

The CTF system plays a pivotal role in finding the support set S of z[n], where z[n]=[z1[n],z2[n],…
,zL[n]]

T
, and zi[n] is the inverse DTFT of zi(f).  

In order to use CTF, the literature [7] constructs a frame V for the measurement set y(Λ). Such a frame 
can be obtained by decomposing a matrix Q that is computed as follows: 

 ( ) ( ) [ ] [ ]H T H

n

f f df n n




  Q y y y y VV                                               (9) 

where y[n]=[y1[n],y2[n],…,ym[n]]
T
, thus the support set S can be found through any matrix V. Therefore, it is 

possible for us to use the data in time domain directly instead of y(f) (in frequency domain). Note that the signal is 
a limited energy causal signal in practical, i.e. 

1

[ ] [ ] [ ] [ ]
N

T T H

n n

n n n n


 

   Q y y y y VV                                                   (10) 

Thus we consider the sampling sequence matrix y[n] as the V, for its finite, 1,2, ,n N . Once S of 

z[n] is found, z[n] can be reconstructed as follows: 

[ ] [ ]s Sn nz A y                                                                               (11) 

[ ] 0,iz n i S                                                                               (12) 

zi[n] will be interpolated to Nyquist rate, and then the original signal x(t) is acquired via the inverse Fourier 
transform in zi[n]. 

As can be seen, the recovery of support set is crucial to the final signal reconstruction.  

In literature [7], the support set is determined by Simultaneous Orthogonal Matching Pursuit (SOMP) 
[8], which is a typical algorithm in greedy pursuit, to solve underdetermined equation problems. Subspace Pursuit 
(SP) [9] is another greedy pursuit approach. It adopts the backtracking strategy to refine the support set, which 
can maintain the correct frequency supports and refine the wrong ones during next iteration. The paper [10] 
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expands SP into Simultaneous SP and this leads to a higher success rate than SOMP. An alternative sort of 
approach, called linear programming such as Basis Pursuit (BP), is proposed in [11]. It is based on global 
optimization, while greedy pursuit is based on local optimization. Consequently, linear programming determines 
more accurate solution. However, the complexity of it is higher than that of greedy pursuit. In this paper, we aim 
at developing a novel algorithm to balance between accuracy and complexity used in CTF. 

 

III. The Proposed Algorithm 
A. Algorithm description 
According to the CS theory, a naive approach to the problem of recovering z[n] from y[n] is a problem of 

solving the 
0
 norm minimization. 

1 0

arg min [ ] , . . [ ] [ ]
N

n

n s t n n


 z y Az                                                      (13) 

 Although there are simple recovery conditions available, the approach above is not reasonable in 

practice because its solution is NP-hard. Also, as
0
norm is a discontinuous function, it cannot be solved via 

analytical methods. A novel strategy, called Smoothed
0
Norm (SL0), has been presented in paper [12], showing 

that they use a continuous function to approximate the
0
norm, in order to solve the problem with analytical 

methods. 
              Consider the function        

2

2
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                                                                               (14) 

        and note that 
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define a function 

               
1

( ) ( )
m

i

i

F f s 


s                                                                           (16) 

where 
1[ , , , , ]T

i ms s ss , denoting the signal vector. Then it is clear that
0

( )m F s s , and the 

approximation tends to be equal when 0  . Thus the problem (13) is equivalent to solving 

 

      argmax ( [ ]), . . [ ] [ ]F n s t n n z y Az                                            (17) 

Our work is to expand SL0 to CTF system, proposing a simultaneous version of SL0 using in CTF. The 
procedure of the proposed algorithm is listed below. 

 

Input: Matrix A, Matrix of sampling data [ ]ny ; 

Output: The support set S; 

Step 1. Initialization. 
1.1 Solve the least square problem 

2
arg min [ ] . . [ ] [ ]n s t n nz y Az , and obtain 

0ˆ [ ]nz  

1.2 Choose a suitable  max 0 4max max [ ]i
i n

z n   , and 5

min 10   

Step 2. Iteration: 1,2,i   

2.1 Let 
1i ic   , [0.5,1]c  

2.2 Steepest ascent is used to solve the problem  

argmax ( [ ]) . . [ ] [ ]F n s t n n z y Az  

Initialization: Set 
1ˆ[ ] [ ]in nz z  

Iteration: 1, 2,3j  , 2   

a) Let 

22

1

2 2

[ ][ ]
( ) ( )

2 2
1[ [ ] , , [ ] ]

nz nz n

T

nz n e z n e 
 

δ  

b) Let [ ] [ ]n n  z z δ  

c) 1[ ] [ ] ( ) ( [ ] [ ])T Tn n n n  z z A AA Az y  

2.3 Set ˆ [ ] [ ]i n nz z
 

2.4 If 
mini  , then quit iteration; else go to Step 2 and continue the iteration. 
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Step 3. Set ˆ ˆ[ ] [ ]In nz z , I is the times of iterations 

Step 4. Output the support set 
1

ˆsupp [ ]
N

n

S n


  z  

For the sake of the support of ˆ[ ]nz , 
1
 norm of each row is used in the last step. Equivalently, 

any
p
norm is feasible. 

B. Performance analysis 

Essentially, the problem about recovery of the signal is solving the 
0

norm minimization problem. 

Compared with SOMP and SP, SL0 solves the 
0
norm minimization problem directly. Furthermore, since SL0 

choose   from large to small, it is possible to avoid being trapped into local optimal solution. And this makes the 

algorithm more stable and possess higher recovery rate. It is more efficient for SL0 to process 
0
norm using 

steepest ascent strategy because it approximates the 
0
norm by a continuous function. And this contributes to 

reducing the time of processing compared with BP. 

 

IV. Simulation Results 
We will give the simulation results of our strategy comparing the original CTF. For empirical testing, 

we adopt the simulation strategy described in [7] for computing the success rate. The simulated signal has the 

following form 
3

1

( ) sinc( ( ))cos(2 ( ))i i i i

i

x t E B B t f t  


                                             (18) 

where sinc( ) sin( ) / ( )x x x  , the original signal x(t) for simulating contains i=3 pairs of rectangular 

bands (totally N=6), and the width of each is B=50MHz. The energy coefficients for each band is Ei={1,1,1}. 

Time offsets τi={0.4 0.7 0.3} μsecs. The Nyquist rate is set fNYQ=10GHz.  

The number of channels m is selected from 11 to 35 for non-noisy case, while from 11 to 65 for noisy 

signal in our simulation experiment. We compute 500 times for each channel. Parameters of the proposed 

simultaneous version of SL0 are as follows. c=0.8, 2  . Simulation results are presented in Fig 4. 
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(a) Noiseless signal (b) Noisy signal. SNR=10dB 

Fig 4. The simulation results-success rate of support recovery versus the number of channels 

 
The noise mixed into the signal is white Gaussian noise. SNR is 10dB. The result of simulation 

demonstrates that our strategy is superior to the original CTF.  

It is clear that success rate of proposed algorithm rises more steeply when channel number is relatively 
small, while in the large channels situation, the slope of that of SOMP is higher. This is the consequence of 
adding channel numbers. SOMP exploits information between channels more effectively, and this lead to the 
result. SL0 processes data from each channel respectively, which does not consider the interrelated information 
between channels. 

V. Conclusion 
In this paper, a strategy of recovery for MWC is proposed. Compared with the original SOMP used in 

CTF, our algorithm takes advantage of the high recovery rate of SL0 method. In order to find the support set 

more accurately, our method solve the norm minimization problem directly, which can obtain global optimal 

solution. Numerous simulation results confirm the conclusion that the proposed strategy shows a better 

performance. 
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